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FOREWORD

(U) Based on existing integration models in the liserature, an evaluation frame-
work is developed to assess an operator’s ability to use muitisensor, or sensor fusion,
displays. In general, the multisensor display can be evaluated by compesing the operator’s
- perfarmance with the multisensor display to predicted performance denived from the use

of the individual sensors comprising the display. Au experiment demonstrating the
usefuiness of the proposed evaluation framework was conducted. :

(U) This effort was performed by the Human Factors Branch (Code 3152) at the
Naval Weapons Center and was completed in fiscal yesr 1989 at NASA Ames Research
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Human Factors Bluck Fanding, NPRDC docureents N68221/87/WX/70008, N6822 1/88/
WX/8012A, and N68221/WR/60028, under the direction of Mr. Jeff Grossman (NPRDC)
and LCDR Tim Siager NADC).
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INTRODUCTION

Many different types of imaging sensors exist, each sensitive to a different
region of the electromagnetic spectrum. Passive sensors, which collect energy
emitted or reflected from a source, include television (visible light), night vision
devices (intensified visible light), and infrared (heat) sensors. Active sensors, in
which objects are irraciated and the reflected energy from those objects collected,
include sonar and ultrasound {acoustic waves) and radar (radio waves)

These ser.ors were developed because of their ability to increase the
probability of identification or detection of objzcts under difficult environmenta:
conditions. Each sensor is sensitive to different pordons of the spectrum; therefore
resultant images contain different infor.nation even when used under the same
conditions. Because of this variety, image processing algarithms that will "fuse” the
information from more than one sensor into a single coherent display image are
being developed. These displays are termed multisensor or sensor fusion displays.

The work described in this paper was conducted to guide the development of
such multisensor displays. An engineer developing such a system constantly
reviews the resuiting display on a subjectve basis. More formal testing is also
necessary. Suppose, for example, that two sensor sources are available to operators
and that each of these sensors alone leads to 0.70 probability of target recognition
ander some particular environmental conditions. What is the expected probability of
target recognition when the two sensors are combined according to some inlage
processing technique? If observed target recognition improves to 0.80 with a sensor
fusion system, is that a large improvement, or should one actually sxpect much
more? The ability to answer these types of questions can lead to a better human-
machine system that can be evaluated both relatively and absolutely: relatively, by
determining which systems are better than others, and absolute.y, by comparing
operator performance to theordtical expectations.

INFORMATION INTEGRATION MODELS

Previous w~ork has been conducted on the topic cf how operators integrate the
information from multicomponen: auditory signals (Reference 1), from the visual
and auditory senses (Reference 2), and from :multiple observatons over ume
(Reference 3). These models all predict operator integration performance as a
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function of the operator s performance » h the individuai snrrull compnsing the
integranon task. Two classes of models have oeen developed: de :;s1on combinanon
models znd observation integration models (for a review, see Reference 4). The
decision combination models assume that in the integration task the operator makes
an individual decision about each aspect of the combined display and then combines
those decisions to yicld one final decision. At the time of the fina! decision, only the
previous decisions are available and not the information that led to the individual
decisions. The observation integration models, on the other hand, assume that the
operator does have access to that information. The internal representations oOf .1€
individual observations (e.g., likelihood ratics) are then combined, yielding only
one decision.

The simplest version of a decision combination model is the probability
summation, or statistical surtmaton, model. As Reference 4 notes, it is derived
from the independence theorem of probability theory and was first proposed by
Pirenne as a perceptual model (Reference ). It states that performance with a
complex stmulus is predictable from the performance with the :ndividual stimuli
according to the following equagon:

Pu=P, P~ PP,

where p; and p; represent detection probabilities for the two stirauli presented in
isolation, and p12 is the detection probability when both stimuli are available.

The most cited version of the observation integration model is derived from the
theory of signal detectability and was originally proposed by Green (Reference 1).
As in Pirenne's model (Reference 5, in its most simple form, the informaton from
the two sour~es 1s also assumed to be independent and uncorrelated. The model 1s
stated in terms of the sensitivity measure, d"

dy, = {(d'x)z + (d'zjz] 2

where d'; and d'; and d'2 respectively, represent performance with the :wo sumuli
presented in isolation, and when both stimuli are available.

Swets has noted that the stanstical summation model fits simple detection cata
fairly well wher the observed detection probabilities are corrected for chance
success (Reference 4). Similasly, in the experiments in which it has been applied.
the observation integration model well represents the data. In general, the statistical
summation model predicts better integration performance than the observarion
integration model presented here. My calculations indicate that when both models
are expressed in corrected-for-chance probability of a correct response, the
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statistical summation model predicis the detection probability for integration w he
about 0.05 (depending on the absclute level) higher than thar precictes by the
observaton integraton moae!.

Various versions and extensions of these models have been proposed. These
include various rules of decision combination (Reference 3), correiation
{informational rsdundancy) among inputs for decision combiiation (Reference 2),
and observation integradon (Reference 6), as well as versions of the observation
integradon medel in which the separate inputs sre differentiaily weighted
(References 7 and 8).

The o integration models presented here have been incorporated into the
development of a framework to evaluate combined human-machine performance for
sensor fusion displays. Additionally, the framework could be used to evaluate an
operator's ability to integrate information from a muitiple mor.itor display system or
a screen paging system.

A PROPOSED EVALUATICN FRAMEWGRK

A sensor fusion display typicaily refers 1o the combined image display
resulting from the application of one image processing technique on two or more
individual sensor images. The proposed framework for evaluating the operator's
ability 10 use such systems is considered a normative approach; the operaior's
performance with the sensor fusion displzy can be compared to performance on the
individual sensor displays comprising that display and to various optimal models of
integration.

Typically, as the environmental conditions change in which the individual
sensor operates, so docs the information content of that image. The information
content of the image can be "scaled” by the operator’s ability to perform a target
identification or discrimination task. One would expect task performance with a
sensor fusion display formed from two low information conten: (hence, poor-
performance) images to still be relatively poor. Similarly, two high informatinn
content (high-performance) sensor images should yield good performance when
combined into a sensor fusion display. Assuming that there was some independent
information in the two individual sensor images, one would also expect
performance with the sensor fusion display to be better than with either of the twe
individual sensors alone. This results in a three-dimensior:al performance space:
performance with the sensor fusion image is a function of the performance levels
associated with the two individual sensor images.
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Figure 1 shows pait of this performance space associated with a sensor fusion
display. The abscissa and the ordis e result from the stimulus-performrance scaling
for sensor (or display) 1 and sensor (or display) 2. respectively, when viewed by
an operator in isolation. The figure shows the iso-performance honizontal “slice”
through the space in which 1l perfcrmance data points represeni 0.72 ‘ corrected for
chance) target recognition probability when the two sensor sour:es are combined
into a sensor fusion disp'ay and presented to an operator. As ncted, the acmal
performance space is three-dimensionai and is represented in Figure 2 by similar-
appearing “slices” at thrze performance levels. Dzia points A, B, C, and D are

discussed beiow.
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FIGURE 1. A Proposed Evaluation Framework
for Multisensor Displays.
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FIGURE 2. Three Horizontal Slices Through
the Three-Dimensional Performance Space.
The number or: esch overlay represents the
performance ‘eve! in P(C), for the dual

dis; Wy or multisensor display task.

Because the sencor fusion display data are plotted as iso-performance slices,
data points n=ar the origin represent better performance than away from the origin.

For the sa.
conditon in

‘evel of performance, a data point near the origin represents a
ch very little infortnation was available in the two displays,

whereas a data .int away from the origin represents a condition in which relatively
more information was available in the separate displays. Thus, data points near the
origin represent increased operator integration efficiency. In these figures and all

6




remrining references. PIC) refers 1o the proportion of correct responses with &
correction for chance applizd. A correction for chiance . necessary when measuring
nerformance in P(C) units becayse the inte granot modiels require that a performance
level of zero be associated with the operator receiving no informatc: frum the
display. No such correction is necessary when measuning performan e in d' units
since d = 0 rzfers to chance performance.

As can be seen from the two figires, the sensor fusion performz.i.ce space can
be divided into three separate arcas, Performance Decrement. Performance
Enhancement, and Performance Super-Enhancement, cach ~ith unique
interpretations if data points lie in those areas. The two right-angle lines dividing the
Performance Decrement and Performance Enhancement areas are determined by the
horizontal and vertical lines crossing the axes at the ievei of performance (P{C) =
0.7Z in Figure 1) for the sensor fusion display. The smooth curves separating the
Performance Enhancem nt and Performance Super-Enhancement areas are the
predictions of the statstical summation model (see above) where piz = 0.72 in
Figare 1 and 0.30, 0.50, and 0.72 in Figure 2. (For clarity, only the statistical
sumrmation model curve has been shown in the two figures. Because the research to
date does not favor either the statistical summation or observation integraton
models, both predictons will be used when evaluat:ng the experirnental data.)

The interpretation of the data points falling ino the three areas is best illustrated
bv example.

PERFORMANCE DECREMENT

Suppose under a given environmental condition, an operator achieved target
recognidon performarice of P(C) = 0.33 when viewing Sensor 1 in isoiadon and
P(C) = 0.84 when viewing Sensor 2 in isolaton. When these two sources are both
avaiiable (separately on two monitors, or fused on a single monitor according to a
sensor fusion algerithm) to the operator and performance is P(C) = 0.72, the
resultant data point would be the cne labeled "A™ in Figure 1. Obviously, in this
situation, the operator has not improved his overall targeting performance. [n fact,
performance in the combined display case has now decreased o P(C) = 0.72,
whereas previcusly the operator used Sensor ! in isolation and reached a
performance of P(C) = 0.84. Such a performance decrement could be the resuit of
the deletion of necessary infcrmation by the sensor fusica algonthm or could
represent a cognitive limitator on the part of the operator.
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PERFORMANCE ENHANCEMENT

Data point "B in Figure | would result if P(C) = 0.72 performance obained in
the combinesd case, when Sensors | and 2 vizlded P(C) = 0.62 and P(C) = 0.53.
respectively, in isolation. In this case, performarce improved since the operator did
better in the combined case (0.72) than with either of the two sources alone (0.55,
0.63). However, one model of infcrmatior integration, the statistical or probability
summation model, predicts a larger improvement in this case. Thus, for data points
falling in this region, there is some performance improvement, bnt one would
expect more. In fact, data point "C,” lying on the statistical summation model
curve, shows that the model predicts that if Sensor 2 performance was 0.52,
Sensor ! performance need only te 0.42 to result in combined performance of
0.72.

Operator performance occurring in this region would occur when some of the
information in the two sources is redundant (correlated and not independent). or
when the operator or the sensor fusion algorithm integrate the informatdon, but do
so suboptimally. The statistical summation model (as well as the obscrvaton
integration model) can be viewed as an upper limit of integration: it assurmes thai the
information in the two sources is independent and non-redundant, and does not
assume any decrease in perfurmance due to the limits of cognitive processes (i.e.,
memory limitations. work ioad, or stboptumal Jecision strategies).

PERFCRMANCE SUPER-ENHANCEMENT

Data point "D" in Figure 1 would resuli if a combined performance of
P(C) = (.72, and individuai performance for the two sensors was P(C) = 0.17
and P(C) = 0.52. Data points failing in this region berween the mode! prediction
and the origin represent improved performance that is betier than is predictable from
the model. That is, when the two sources of informaton are viewed by the
operator, some new, previously unusable, information emerges that results in much
better performance.

The random-dot stereogram display (Reference 9) can be thought of as an
example of a sensor fusion display that has these properties. In these displays,
random dots are offset differentially, yielding a perception of an object in the third
dimension. In such a stereogram there is no information whatsoever in the
individual halves of the stereogram. The information is represented as differences
between the two displays. The object is observable only by stereoscopically {using
the two haives of the stereogram or analvtically determining the differences. In fact,
if one conducted an experiment in which subjects had 10 state the "floating” shape,
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one wouid presumably obtain chance performance when viewing oniv one
stereogram nalf and perfect performance when both stereogram pairs ars viewec.
This represenis P2rommir - super-Enhancement because based on chance
rerformance with ine stercogram haives, one wouid conclude that they contain no
informatoen. This would lead cne 10 predict chanc= ti.fsrmance when both haives
are available, which obviouzly is not the case. C sarly, conditions in which
Performance Super-Enhancement occur could be capit.lized upon to produce useful
sensor fusion techniques. The proposed evaluation framework provides for the
ability to recognize and quanufy such conditons.

USE OF THE EVALUATION FRAMEWORK

To evaluate human performance with a proposed sensor fusion system usiag
p ' 3 g
the proposed evaluation trame-work, tie following steps musi be taken.

1. Performance Scaling of Sensor 1. Determine the psvthometric
function relaang task performance (target/non-target or m-alternanve forced choice:
to the environmental conditions of interest. For exampie, infrared imagery ;s
degraded by increasing atmospheric moisture. The nformaton content of each
sensor image vanes with the envirenmental conditions, and in a sense. (s scaiing
estimates the amount of information available to the operator with Sensor | aione
under those conditons.

2. Per‘ormance Scaling of Sensor 2. Similar to Sensor L.

3. Performance with Sensor Fusion Display. For various com-
binations of envi onmental cr sensor conditons previously evaluaied in isolaton,
determine task performance using the proposed fusion algonthm and associated
display.

4. Performance with Operiiar Integration. As in the senso- fusion
evalnation phase, determine task pe:*-;i7rnance with both sensors but with either two
displays or a spiit screen. This condition acts as a contol condition, essentially
allowing the operator to integrare the information from the two sensors. A sensor
fusion algorithm should vield better task performance than when the operator uses
two displays or a split-screen display.

An experiment was c:.nducied 10 demonstrate the usefulness of the proposed
“evaluagon framework.” Since this work was aimed at the general methodoiogy of
evaluating sensor fusion displayvs and due to the unavailability of a sensor fusion
svstem tha: operates on imaging senscrs and yields a "fused” image. step nc. 3
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above {performance with a sensor fusion algorithm) was not performed. In this
particular experiment, two displays with independent samples of the sumuli
simulating one type of sensor were used. (One might view this as a simulator in
which sensor fusion operates on image samples collected at different times cr from
two data-linked sensor platforms using the same sensor type.) This is a special case
of the sensor fusion condition, but the application of the evaluation framework to
two different sensors is identical. Because there was only one type of sensor tc
scale, step no. 2 above (performance scaling of Sensor 2) was not necessary. That
step, of course, would have been necessary if two different sensors were used.

METHOD

SUBJECTS

Four volunteer subjects were tested. The auther (subject no. ! reported herein)
and three colleagues were tested for 8 to 12 hours each. All subjects reported
normai or near-normal close-distance corrected vision.

SHIP IMAGES

Side profiles of ships from Jane's Fighting Ships (Reference 10) were used as
stimuli in the study. The ship images were approximateiy 2.7 centimeters high by
6.6 centimeters wide and presented on Setchell Carlson 1CM915 CRT displays
driven by a Genisco GCT-3000 image system. Viewing distance was determined
by the subject. The ship images were digitized profiles composed of 60 points
connected by lines, evenly-spaced in the horizontal dimension, as shown in
Figure 3. Each undistorted image spanned 60 vertical pixels by 180 horizontal
pixels on the CRT display.

The independent variable was the amount of noise added o the vertical
dimension of the ship profiles. This variable was quantified as "sigma,” the
standard deviation of a Gaussian distribution with mean zerc. A computer aigorithm
based on randorn number samples was impiem:nted for this purpose. For a given
sigma level, 60 numbers (both positive and negative) were drawn from that
distribution and added individually to the vertical pixel value of each of the 60
poirits of the ship profile. For example, for sigma = 5, on avera . ¢8% (the area of
the Gaussian curve from -1 to +1 standard deviation) of the points would be within
5 pixels of the original undistorted vertical value. New numnbers were drawn from
the distribution for each ship and each tial; thus no two distortions were idenucal.
‘Two of the ships with distortions for four levels of sigma are shown in Figue 4.

10
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FIGURE 3. Digitize 1 Ship Profiles of the 15 Ships Used in the Expenment

SINGLE-DISPLAY TASK

The task was a 4-alternatve, forced-choice (4AFC) task and was controlled by
a VAX 11/750. Subjects viewed a single-CRT display pariuoned by verucal and
horizortal lines into four numbered quadrants, each containing a ship image.
Subjects were required to identify which of the four ships was the California.
which was always present in each display. [n addition to the target ship, California.
three different distractor ships were presented that were randomly drawn from the
14 remaining ships shown in Figure 3. During testing, subjects were allowed tc
study the ship images for an unlimited ume. Subjects responded with a button press
of the numbers 1 to 4, referring to the quadrant which they believed held the target
ship, California. Full feedback (quadrant respended. correct/incorrect, and the
correct quadrant if incorrect) was given after each trial via a digitized speech
capability on a Texas Instrument (TT) Portable Professionai compurer. The end of
tt & verbal feedback iniuated the next trial. Ail four ships on a dispiay were created
with the s. me sigma (distortion) level.

11
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DUAL-DISPLAY TASK

Conditions were identical to the sing.c-display task with the following
exceptions. Ship images were presented on two horizontally adjacent CRT
displays. The four ships were arranged in the same spatial pattern on both displays
(i.e., if the California was in quadrant 2, it was at that location in both displays, and
likewise for the 3 remaining distractor ships). All eight ships presented were
‘ndependently distorted by new draws from the Gaussian distributon. Drawing the
distortion values from independent Gaussian distributions ensures that the
information on the two displays was independent and uncorrelated (see
Reference 11 for a discussior: of this technique). Within each display un a given
trial, the four ships had a constant value of sigma. The value of sigma for each
display was determined as described below.

TEST PROCEDURE

Trials were tested in 25-trial groups, or blocks. Fuil performance feedback
(number correct as a function of sigma) was given after each block. Single- and
dual-display tasks were alternated approximately every two blocks so that the first
few blocks of each task could be discarded as practice.

For the single-display task, five levels of sigma were tested for each subject
and psychometric functions were generated. The five sigma levels used in the firs:
few blocks contained both low and moderate levels of sigma (from 0 to 20 or
5 10 25). Coupled with feedback after each trial, subjects were able to learn the
salient features of the targer ship relatively quickly.

For the dual~display :ask an adaptive threshold estimation procedure was used
that mathematically converged on the stimulus value associated with corrected-for-
chance performance of P(C) = 0.72 (Reference 12). In this technique, display 1
contained ships of one of five previously sclected sigma jevels. In display 2, the
level of sigma (in increments of 5 units) of the ships varied as determined by the
threshold estimation procedure. This procedure determined the display 2 sigma
level as a function of the history of the subjects’ responses. This resulted int five
interleaved adaptive tracks (one associated with each level of sigma in display 1).
This procedure results in five pairs of sigma levels for displays 1 and 2 that all
yield P(C) = 0.72 target identification performance in the limit. When plotted as in
Figures 1 and 2, the data poiuts all lie on the same horizontai "slice” through the
three-dimensional performance space {specifically the one iabeled ".72" in
Figure 2).

13
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Another procedure 1o estimate a stimulus value associated with a constant fevel
of performance is to collapse each of the interleave. tracks across mials Into a
osychometric function that can then be fit with a curve. This proczdure has proven
t0 be useful and is an efficient method to concentrate observations in the
performance range of interest (Reference 13). This procedure was attempred in this
experiment but did not vield reliable estimates because of the number of data points
in the psychometric function. This procedure would be preferred to the analysis thai
was used if the number of data points allowed the estimation of stable psychometric
functions.

The use of the tracking algorithm in the present study should be viewed as an
experimental convenience, with its merits or limitations tangential to the use and
development of the evaluation framework. Use of the tracking algorithms may not
be appropriate in the actual evaluaton of a specific proposed senscr fusion system
because only certain discrete pairs of stimulus combinations may be possible. For
example, if atmospheric humidity affects the image quality of both sensors, only
combinations of stimuli in which th~ atmospheric humidity was identical make
sense. In those cases, one would not use the threshcld estimaticn procedure but
would test the imagery assccr ited with the environmental conditions of interest.
These resultant dat. pairs would then be plotted on the various appropriate
horizontal slices similar to Figure 2 (determined by the dual-display or fusion-
display performance). Interpretation of the placement of the data poinats on the
various horizontal slices would be carried out in a fashion similar to that previously
described.

RESULTS

In the single-display condition. the first four blocks of data collected were
eliminated from the analysis as practice data. This decision was made after viewing
the accuracy data for each block. The data were analyzed and summarized as both
d' and P(C) (corrected for chance} measures. The d' data were converted to
In(sigma) by In(d") and fit with a regression equation weighted by the number of
observations per point (References 13 and 14) as shown in Figure 5. The P(C,
values reported have been corrected for chance according to the following equation
(see Equation 5.4 in Reference 3):

P (Cleompcre = | B(Clopseme = 0-23]/0.75
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These P(C) data were converted to In{sigma) by z-score (unit-normal deviate) and
likewise fit with a weighted regression equation. The data and associated
psychometric functions are shown in Figure 6. Each data point in the wo figures is
based on 60 to 100 observations. The Pearson correlations associated with the
linear regressions ranged from -0.91 tc -0.99.

O¢ 10 ¢
SUBJECT 1 4 SUBJECT 2

v ! (;\% v 1f

10 100 ‘10 100
SIGMA SIGMA
10 E 10
SUBJECT 3 : SUBJECT ¢
- 1k - 1t
° .\'\\. v 1 [\’\q\qb
~N 1 “
t
A al
10 100 10 100
SIGMA SIGMA

FIGURE 5. Psychometric Functions for the Four Subjecis Relating Distortion
Level (sigma) to the Sensitvity Measure, J, in the Single-Display Task.

In the dual-display condition, the five interleaved adaptive tracks were
analyzed. For each of the five fixed display 1 sigma levels, an average level of
sigma was calculated using Leviu's reversal mean technique (Reference 12). In that
technique, the stimulus level associated with P(C) = 0.72 is estimated by averaging
the midpoints of sither the ascending or descending series of each track.
Customarily, some number of the early midpoints are discarded to aliow
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performance to stabilize. In the present expenment, the first two ascending and two
descending series of every track were eliminated prior to computing the reversal
mean estimates. This corresponds to approximately the same amount of data that
was deleted in the single-display coadition, so that the data analyzed in both the
sing'z- and dual-display conditions represent comparable levels of aining.

1.0 10
_ \c\ SUBJECT 1 L SUBJECT 2
o8t o8t
0.6+ 06t
s | 5
& o4t & o4t
02t o.zL
N k N
0 10 20 30 40 o 10 20 30 40
3IGMA SIGMA
1.0 1.0
SUBJECT 3 SUBJECT 4
08} 08+
0.6+ 0.6}
g 5
& o4r £ ost
. L ]
02t 02}
0.0 . - . 0.6 . .
0 10 20 30 40 o 10 20 30 40
SIGMA SIGMA

FIGURE 6. Psychometric Functions for the Four Subjects Relating Distorton
Level (sigma) io Corrected-for-Chance P(C) in the Single-Dispiay Task.

Additionally, the first few blocks of testing included -elatively easy levels of
the five fixed sigma levels on display 1. These first blocks were discontinued as
the subject becarne better at the task, and were replaced by higher sigma levels. For
example, the five levels for subject no. 2 ranged from 0 to 20 at the beginning of
the experiment but were increased tc a range of 15 to 35 to keep the stimuli tesied in
the appropriate meaningful psychophysical range and to not exceed the

16




limitations of the tracking algorithm. Clearly, in an intezration task, the algorithm
will fail to converge when single display performance exceeds the value that the
algorithm is attempting to maintain (in this case) P(C) = 0.72 with two displays.

NWC TP 7027

The discontnued tracks were not included in the analysis.

When the five fixed sigma leveis on display 1 were changed as described
above, the tracks were continued if possible. In a small number of the wacks, the
track was erroneously "reset” to an arbitrary starting value. In those cases. the
ascending ¢t descending series, which included the arbitrary s:arting value, was not

included in the estmate of the reversal mean.

Table 1 shows the dual-display performance data for those tracks that yielded
reversal mean estimates after eliminating the first two ascending and descending

series.

TABLE 1.

Condition. SE

Tracking Algorithm Estimates of Display 2 Sigma Level as a
Functiou of Display i Sigma Level for Each Subject in the Dual-Display
= standard error of the mean; n = pumber of reversals.

!

Reversal mean estimates

] Subject ) , ]
. no. Despiay 1 Dssplay 2 SE n
sigma sigma
‘ 1 15 20.68 1.29 11
20 17.00 2.06 10
- 25 15.00 1.60 7
30 11.00 1.07 10
3% 17.50 2.89 3
2 15 25.83 4.41 3
20 2750 0.00 1
25 22.00 3.10 5
30 19.38 1.20 4
35 13.50 0.61 5
3 15 16 00 1.14 5
20 14.38 1.03 8
25 13.21 0.83 7
30 8.93 0.99 7
35 12.50 0.00 1
] 4 17 26.43 5.26 7
13 16.04 1.36 12
21 17.00 1.66 10
3 18.91 1.23 11
25 13.75 G.90 12
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IMPLEMENTATION OF THE EVALUATION FRAMEWORK

Using the data from cuvbject no 4, Figure 7 is an example of the analysis
method. T ¢ lower panei shows the stimulus track determined by the threshold
estimation algorithm for the condition in which the distorton of the ship images in
the fixed display, display 1, was sigma = 25. Based on the pattern of this subject's
responses, the sigma level of display 2 was either increased or decreased across
trials in an attempt to maintain P(C) = 0.72 (corrected for chance). The mean of the
midpoints of the 12 descending series was calculated to be 13.75, as shown by the
bold line. Therefore for this subject, when sigma = 25 on display 1, the sigma leve:
on dispiay 2 had to be 13.75 to obtain P(C) = 0.72 (corrected for chance).

These two sigma levels can then be "scaled” by the single-task psychometric
function as shown in the upper half of Figure 7. In this case, when display 1 was
sigma = 25 it yielded P(C) = 0.39 in isolation. When display 2 was
sigma = 13.75 it yielded P(C) = C.71 in isolation. When both displays were
available, however, performance was presented simultaneously with a P(C) of
0.72. That is, for this condition and subject, in P(C) accuracy terms, a display
"worth" 0.39 plus one "worth” 0.71 combined to be "worth” 0.72.

All of the data pairs yielding iso-pesformance levels can be scaled in the
manner described above and plotted or. the evaluation framework graph. Figure 8
shows the data in P(C) units as scaled by the P(C) psychometric functiors, and all
points representing P(C) = 0.72 (corrected for chance) dual-display performarice.
Figure 9 shows the data in d' units as scaled by the d' psychometric functions,
with all points representing d' = 1.86 (which corresponds to P(C) = 0.72). In both
figures, only the dat: based on three or more reversals (n > 3 from Table 1) are
plotted. The two curves represent predictions of the two optimal integration models
(statistical summation and observation integration) as described by the equations
shown in the figures. The d' predictions and P(C) predictions, respectively, were
converted to P(C) and d' units according to algorithm no. 2 in Reference 15.
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19




NWC TP 7027

1.0
SUBJECT ¢
SUBACY 2
0.9 SUBJECT 3
SUBJECT ¢

0.72 = -
04_912 * LR PR PRI

2 .2
03¢t d‘z = 1.86 ’J(d‘) . (dz)
02r
Q1
0.3 05 05 .6 0.7 0

P(C) DISPLAY 2 ALONE
o
w»

o.o e . e _i
0.0 0.1 0.2 R 0.9 1.0

PC) DISPLAY 1 ALONE

FIGURE 8. Experimental Daia, in Corrected-for-Chance P(C).
Overiayed on the Proposed Evaluation Framework.

DISCUSSION AND CONCLUSIONS

Ten of the cighteen data points in Figures 8 and 9 lie in the triangular
"performance enhancement” region when plotted onto the evaluation framework
graph. For those conditions, the subjects were able to integraie the images from the
two displays and performed better than when only one of those displays was
available. The conditions that led to integration appear to occur whern: display ne. 1
was of moderate cistortion (approximately F(C) = 0.50 in Figure 8, ard d' = 1.25
in Figure 9).
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FIGURE $. Experimental Data, in d'. Overiayed on the Proposed
Evaluation Framework.

When a highly distorted display (vieiding about P(C) = 0.30) 1is presented as
display no. 1, the images in display no. 2 must be of very low distortion to yield
P(C) = 0.72 with both displays. In fact they must be of suck low distortion that if
presented in isolation, they would have yielded a performance of P(C) = 0.80 or
0.90. The subjects would have done better in those conditons if the subjects had
simply ignored the highly distorted images on display nc. 1 and based their
responses on'y on the images of display no. 2. (Graphically, that would have
forced the data points onto the horizontal straight ines showr: in Figures 8 and 9.)

A mode! in which subjects always give cqual weight to the information in the
two displays (despite the distortion level) would explain this finding. The effect
may be similar to that noted in Reference 16 where subje~ts weighted obviously
rrelevant information equally with relevant information. The conditions which
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facilitate the imiegracon of display information, and those that not only do not
facilitate, but actually decrease performance, clearly warrant more investgauon.

As stated earlier, the statistical summation and observation integration models
can be viewed as an upper bound to normal (not Performance Super-Enhancement)
information integration. In this particular experiment, the model predictions were
not only an upper bound on perfurmance in general, but in fact were appropriate
predictions since the information in the dual-display condition was independent and
uncorrelated. The models’ failure to predict the data estzblishes the existence of the
subjects’ cognitive limitanons in this particular task.

As noted previously, since these models have both been extended in the
literature to include correlation between information sources, one could use model
fits 1o determine the level of informational redundancy between two displays. If one
were able to measure objectively such redundancy on a specific task, then 1t would
be necessary to use those equations in the evaluation framework instead of those
used in Figures 8 and 9, which assume no correlation. Increasing the correlation
from zero to one in these models forces the model predictions towards the verucal
and horizontal lines representing the boundary of the Performance Decrement and
Performance Enhancement areas in the evaluation framework. This holds because
data points away from the origin represent less integration, and with increasing
correlations one expects to observe less integration (adding a second display does
not add as much new information with larger correlations).

In summary, the evaluation framework developed herein has been
demoustrated to be a useful tool to evaluate an operator's ability 10 integrate
information from two displays. Similarly, it has been shown how one can
determine the amount of information that an operator can extract from a sensor
fusion, or multisensor, display. The techniques discussed here allow the evaluation
of nultisensor displays by comparing multisensor display performance to the
predictions of existing optimal integration models and to multiple display
presentations. This evaluation allows the human factors engineer to recognize in
both an absolute and a relative sense whether the proposed multisensor display does
what it was designed to do, i.e., integrate the sensor information and present it
well,
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